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Eisenstein type integrals on sphere and their generalizations

Eigenfunctions of the distorted Laplacian on the two-dimensional sphere are
studied. Integral representations for homogeneous eigenfunctions of this operator
with a Poisson type kernel are obtained.
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where F is the Gauss hypergeometrical function.

Theorem 1. Let

L = 4(1 + |z|2)2 ∂2

∂z∂z
− 4s2|z|2Id− 4s(1 + |z|2)

(
z
∂

∂z
− z

∂

∂z

)
,

where Id is the identity mapping.

(i) Any smooth function f : C → C satisfying the equation

Lf = (4s2 + 1− λ2)f

and the condition
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has the form f(z) = (Dkf)(0)H
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(ii) The following equality
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holds, where

Cν, k, s =

{
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The representations of this form called Eisenstein’s integrals play an important
role in various questions of the analysis and applications.

For similar results for eigenfunctions of the Laplace-Beltrami operator on sym-
metric spaces you see, for example, in [1-3].
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